Prof. dr hab. inż. Józef Gawlik
Politechnika Krakowska
Katedra Inżynierii Procesów Produkcyjnych

RECENTZJA

Rozprawy doktorskiej mgr inż. Przemysława Zawadzkiego nt.: „Metodyka budowy zautomatyzowanego systemu projektowania wyrobów wariantowych z zastosowaniem narzędzi inżynierii wiedzy”
Promotor: prof. dr hab. inż. Adam Hamrol

1. Zakres i charakterystyka rozprawy

Przedstawiona do recenzji rozprawa obejmuje 132 strony, a w tym: 4 strony streszczeń w j. polskim i w j. angielskim, 1 strona wykazu oznaczeń (nomenklatura), 2 strony spisu treści, 10 stron spisu literatury (133 pozycje), 8 stron spisu rysunków, 1 strona spisu tabel oraz 1 strona wykazu projektów badawczo-rozwojowych i staży, w których brał udział Autor rozprawy doktorskiej (posłowie). Praca składa się z 7 rozdziałów.

We wprowadzeniu – rozdział 1 Autor przedstawia genezę pracy, podkreślając rozwój i rolę koncepcji produkcji zorientowanej na indywidualnego klienta, nazywanej masową kastomizacją (mass customization), odwolając się do opracowań wielu autorów, którzy analizowali to zagadnienie w odniesieniu do różnych wyrobów przemysłowych. Słusznie zwraca uwagę Doktorant, iż „wdrożenie masowej kastomizacji jest z punktu widzenia odbiorcy bardzo atrakcyjne, ale dla przedsiębiorstwa stanowi duże utrudnienie i niesie za sobą ryzyko niepowodzenia, przede wszystkim w wyniku zwiększania kosztów projektowania i wytwarzania”. Należy podkreślić, że idea kastomizacji łączy w sobie dwa sprzeczne aspekty, tj. masowość produkcji i jednostkowość wymagań klienta. To zaś pociąga za sobą konieczność zmian organizacyjnych, nowych inwestycji w elastyczne systemy produkcyjne oraz znaczące przyspieszenie procesu projektowania wyrobów i technologii.

Dlatego też stwierdzenie Doktoranta, że „...uzasadnione staje się opracowanie dedykowanych rozwiązań, usprawniających i koordynujących projektowanie wyrobów wariantowych tak, aby skrócić czas tego procesu i zapewnić mu odpowiednią jakość” można uznać za przewodnią myśl tej pracy.

Biorąc pod uwagę znaczenie i potencjalny zakres zastosowania proponowanej metodyki w warunkach przemysłowych, wybór tematu pracy doktorskiej uznaję za trafny i w pełni uzasadniony do podjęcia.

W rozdziale 2 (s.11 – s.28) Doktorant analizuje kwestie związane z koncepcją projektowania wyrobów wariantowych, tj. takich wyrobów, których cechy konstrukcyjne, funkcjonalne, wizualne i inne są dostosowane do indywidualnych wymagań (oczekiwań) odbiorcy. Wybór wariantowy, jak podaje Autor rozprawy, jest uznanowany (… za podstawowy element strategii masowej kastomizacji...”). Stosowane rozwiązania w tym zakresie sprzyjają między innymi:

- wyodrębnieniu rodzin wyrobów ze względu na ich przeznaczenie, przy których projektowaniu dąży się do możliwie maksymalnego ujednolicenia stosowanych rozwiązań. Zakres ich stosowania jest na ogół związany z konkretną branżą;
• zwiększeniu zakresu i poziomu standaryzacji wyrobów;
• zmniejszeniu kosztów produkcji i rozwoju nowych wyrobów;
• optymalizacji struktur konfiguracji wyrobów;
• integracji obszarów marketingu i inżynierii produkcji;
• samodzielnej konfiguracji wariantu wyrobu za pomocą specjalnych aplikacji komputerowych (rys. 2.2);
• poprawie komunikacji w relacji producent – odbiorca.

Kolejnym zagadnieniem, które w sposób zwięzły analizuje Doktorant jest proces projektowania. Poglądy i definicje na temat procesu projektowania zmieniały się, ale uwzględniając aktualne trendy można przyjąć, że powinien on uwzględniać "... oczekiwania przyszłych użytkowników wyrobu, przy założeniu wykorzystania minimum nakładów i zasobów do jego produkcji".

Projektowanie może mieć charakter:
• rutynowy - opracowanie konstrukcji na bazie istniejących, sprawdzonych rozwiązań;
• innowacyjny – opracowanie konstrukcji z częściowym zastosowaniem nowych rozwiązań;
• kreatywny – opracowanie zupełnie nowych rozwiązań konstrukcyjnych.

Projektowanie wyrobu wariantowego jest specyficznym przykładem procesu konstrukcyjnego opracowania wyrobu (rys. 2.3.) Aktualnie istotną rolę pełnią systemy komputerowego wspomagania CAx, wyposażone w specjalistyczne narzędzia do zarządzania wiedzą w procesie projektowania, zawierające między innymi techniki modelowania parametrycznego (rys. 2.4.) Modele parametryczne są bazą do budowy „inteligentnych rozwiązań” w programach CAD, zawierających złożoną wiedzę inżynierską. Doktorant przedstawia główne cechy i zalety tych systemów, ale zwraca też uwagę na pojawiające się trudności w ich opracowaniu.

Zastosowanie systemów komputerowych wspomagających projektowanie wyrobów wariantowych może znacząco usprawnić ten proces. Przykłady zastosowania takich systemów zostały przedstawione i omówione przez Doktoranta (rys. 2.6 – rys. 2.8.)

Autor rozprawy jest również współautorem konfiguratora wspólnie z producentem autobusu miejskiego, dotyczącego wsparcia sprzedaży oraz przygotowania produkcji przy aktywnym udziale odbiorcy w przygotowanie konfiguracji wariantu pojazdu (rys. 2.9.) Drugim przykładem współautorskiego rozwiązania Doktoranta jest system do automatyzacji projektowania łączników, stosowanych w instalacjach sanitarnych (rys. 2.10.)

Przedstawione przez Autora rozprawy przykłady, jako studia przypadku, wskazują, że do wprowadzenia w przedsiębiorstwie produkcyjnym strategii masowej kastomizacji nie wystarcza wykwalifikowany personel i techniczne wyposażenie sprzętowe oraz programowe. Niezbędna jest metodyka wspomagająca budowę zintegrowanego systemu konfiguracji i projektowania wyrobów wariantowych, umożliwiająca automatyczne przygotowanie projektu nowego wariantu.

Realizacja tego zadania wymaga odpowiedniej wiedzy, która musi być przyswojona przez wytwórcę, przy czym problemem jest nie tylko bieżące jej stosowanie, ale także korzystanie z niej w przyszłości. To zagadnienie jest przedmiotem rozważań w rozdziale 3 (s. 29 – s.49.) Podział wiedzy (wg S. Rydzikai) został ujęty na rys. 3.1.

Uwaga: w ujęciu przedstawionym na rys. 3.1 w odniesieniu do wiedzy ontologicznej – klasa, powinno się mówić o właściwości, a nie o własności.
Słusznie Autor rozprawy poświęca tak wiele uwagi problemom klasyfikacji, akwizycji i reprezentacji wiedzy, ponieważ, jak pisze mgr inż. P. Zawadzki „... właśnie ze względu na podejmowanie decyzji wiedzę należy postrzegać jako największe bogactwo przedsiębiorstwa produkcyjnego, gdzie jego konkurencyjność bardzo często zależy od doświadczenia pracowników”. Dlatego tak ważne jest też gromadzenie, zapisywanie i możliwość korzystania z zasobów tej wiedzy.

Dobór metod pozyskiwania i reprezentacji wiedzy to domena inżynierii wiedzy, która jest związana z tworzeniem baz wiedzy oraz wykorzystaniem zasad semantyki do jej przetwarzania z zastosowaniem technologii informacyjnych (IT).

Projektowanie oparte na wiedzy wiąże się z rozwojem systemów KBE (Knowledge Based Engineering), które łączą programowanie zorientowane obiektywko, techniki sztucznej inteligencji i programy CAD. Zastosowania systemów KBE jest sposobem zapewniającym realizację założeń strategii masowej kastomizacji, a zastosowanie rozwiązań opartych na wiedzy we wczesnym etapie projektowania znacznie zmniejsza koszty późniejszego wprowadzania tych zmian (tab. 3.1 i rys.3.4.) Przykłady zastosowania koncepcji systemu KBE zostały przedstawione na rys. 3.5 – rys.3.7.

Zasadniczym problemem budowy systemów opartych na wiedzy jest porządkowanie wiedzy prowadzące do utworzenia systemów o ogólnym przeznaczeniu. Przykłady to metodyka CommonKADS, MOKA (rys.3.8 – rys.3.11), KNOMAD (rys.3.12), KADM (rys.3.13.)

Uwaga: z uznaniem podkreślę, że Doktorant rozróżnia pojęcie „metodologii”, jako nauki od „metodyki”, jako określonej procedury realizacji zadania projektowego, technologicznego, itd.

Oceniając tę część rozprawy doktorskiej stwierdzam, że w odniesieniu do tematu rozprawy doktorskiej analiza literatury została przeprowadzona w sposób zwięzły, przejrzysty i na poziomie potwierdzającym bardzo dobre przygotowanie mgr. inż. P. Zawadzkiego do podjęcia zaproponowanego tematu pracy.

Rozdział 4 zawiera sformułowany cel pracy, którym jest „... opracowanie metodyki, zapisanej w formie procedury, wspomagającej budowę systemu informatycznego, przeznaczonego do automatyzacji procesu projektowania wariantów wyrobu, obejmującej opracowanie architektury systemu i budowę jego komponentów”.

Doktorant formułuje też tezę pracy: „automatyzacja projektowania wyrobów wariantowych jest czynnikiem zwiększającym efektywność strategii masowej kastomizacji”. Treść tego sformułowania nie budzi zastrzeżeń.

Uwaga: wg mnie powinno być użyte słowo „hipoteza” zamiast „teza”, bowiem teza w sensie logiczno-matematycznym jest częścią twierdzenia, które należy udowodnić na podstawie przyjętych przesłanek, przy określonych założeniach (warunkach początkowych i ograniczeniach). Natomiast hipoteza jest założeniem opartym na prawdopodobieństwie, wymagającym sprawdzenia, mającym wyjaśnić określone prawo lub zjawisko.

Precyzując cel pracy Doktorant określił także planowane do osiągnięcia cząstkowe zadania, tj.:

- uniwersalny tok postępowania przy budowie systemu informatycznego, automatyzującego projektowanie wariantowych wyrobów;
- metodę pozyskiwania i weryfikowania wiedzy o sposobach projektowania wyrobów wariantowych w programie CAD;
- standaryzację procesu projektowania, poprzez ujednolicenie procedur oraz uporządkowanie wiedzy w przedsiębiorstwie.
Rozdziały 5 stanowi główny rdzeń opiniowanej rozprawy, bowiem zawiera metodykę budowy zautomatyzowanego systemu projektowania wyrobów wariantowych. Doktorant określił założenia (s.52) do opracowywanej metodyki pod akronimem MDAVPD (Methodology of Design Automation of Variant Products), a system projektowania nazwał SAVPD (System for Automatic Variant Product Design).

Aby uwzględnić stosowane w przedsiębiorstwie sposoby projektowania wyrobów w programie CAD, Autor rozprawy zaproponował pozyskiwanie wiedzy poprzez jej strukturalizację, wyróżniając w modelu tej wiedzy klasy informacji, tj.: proces, etap, zadanie, parametr, relacja (rys.5.1.) Etapy metodyki MDAVPD (rys.5.2) obejmują: pozyskiwanie wiedzy, formalizację wiedzy oraz implementację wiedzy. W każdym z etapów zostały wyszczególnione główne zadania do wykonania, tj.:

- identyfikacja potrzeb i zasobów do budowy systemu SAVPD (tab.5.1);
- akwizycja wiedzy o sposobach projektowania stosowanych w przedsiębiorstwie (rys.5.3 oraz tab. 5.2 – tab.5.5);
- projekt systemu SAVPD;
- budowa systemu SAVPD;
- uruchomienie systemu SAVPD.

Pełny algorytm budowy autorskiego systemu SAVPD został przedstawiony na rys.5.4.

Poprawność zaproponowanej przez Doktoranta metodyki MDAVPD została zweryfikowana – rozdział 6 (s.64 – s.110) na przykładzie łącznika instalacyjnego, wytwarzanego w technologii kucia matrycowego na gorąco oraz na przykładzie wyrobu – rury giętej. Bazą dla obu systemów był program MS Access oraz CATIA v5 do budowy modeli autogenerujących. Interfejsy użytkownika zostały przygotowane w języku Visual Basic oraz PHP (Personal Home Page). Doktorant opracował niezbędne formularze, szablony raportu, tabele i reguły projektowe, szczegółowe zadania, parametry i relacje dla wariantów wyrobów oraz modele CAD. Architektura systemu SAVPD dla łączników instalacyjnych została przedstawiona na rys.6.19, a przepływ danych w tym systemie dla rur giętych - na rys.6.36. Diagram czynności modelowania podstawowego kształtu rury oraz kolejne przykłady zostały ujête na rys.5.37 – rys.6.45. Okno interfejsu do konfiguracji wariantu rury i kolejne operacje z tym związane zostały przedstawione na rys.6.49 – rys.6.57.

Skuteczność działania systemu SAVPD została w pełni potwierdzona, a czas modelowania wyrobu wydajnie skrócony. Zaletą systemu jest także uproszczenie procesu przygotowania wyceny dla klienta, gdyż niezbędne dane dotyczące wariantu wyrobu są pobierane automatycznie z modelu CAD.

To bardzo skrótowe, syntetyczne przedstawienie przeze mnie zakresu prac doktora - mgr. inż. Przemysława Zawadzkiego upoważnia do wyrażenia opinii, że zastosowane metody i procedury badawcze oraz uzyskane efekty świadczą o szerokiej i dogłębnej wiedzy, a także umiejętności analizy oraz syntezy złożonych problemów naukowych, nakierowanych na ich przemysłowe zastosowania. Stwierdzam również, że rozdziały 5 i 6 pracy doktorskiej zostały opracowane na bardzo dobrym poziomie.

Merytoryczną część rozprawy doktorską zamykają wnioski i kierunki dalszych badań – rozdział 7. Wnioski ogólne, jaki wnioski o charakterze utylitarnym są efektem wykonanych przez Doktoranta opracowań.

Na uwagę zasługują wnioski do dalszych prac, a w szczególności wskazanie na celowość rozwoju badań nad opracowaniem narzędzi do analizy i zdolności oraz potencjału do automatyzacji wyrobu wariantowego z uwzględnieniem potrzeb rynku i kosztów.
2. Ocena metodologicznej i metodycznej koncepcji rozprawy doktorskiej

Na podstawie przedstawionej procedury rozwiązywania postawionych zadań badawczych, metodologiczną i metodyczną koncepcję rozprawy doktorskiej oceniam w pełni pozytywnie, albowiem zawiera ona zwięzłą, poprawną, merytoryczną analizę systemów wspomagających projektowanie wyrobów wariantowych oraz propozycję własnej koncepcji i oprogramowania do rozwiązania postawionego problemu badawczego. Przedstawione przykłady szczegółowych rozwiązań i ich pozytywna weryfikacja potwierdzają poprawność przyjętych założeń i rozwiązań.

O odpowiednim przygotowaniu Autora rozprawy do prowadzenia prac badawczych świadczą: rzeczowa, merytoryczna analiza i syntezę literatury, wykorzystanie wiedzy z zakresu planowania i organizacji badań, zastosowanie zaawansowanej wiedzy oraz umiejętności z zakresu technologii informacyjnych, a także praktyczna weryfikacja opracowanych programów komputerowych.

Za oryginalny i ważny pod względem naukowym oraz utylitarnym wkład Doktoranta w rozwiązanie postawionego problemu badawczego uznaję:

- wykazanie, że główną przeszkodą budowy zautomatyzowanych systemów projektowania wyrobów wariantowych jest umiejętność pozyskiwania, zapisywania i przetwarzania wiedzy konstrukcyjnej i technologicznej;
- wskazanie na konieczność rozwoju obszaru badawczego KBE (Knowledge Based Engineering), jako czynnika warunkującego realizowanie założeń masowej kastomizacji;
- opracowanie metodyki standaryzacji procesu projektowania (MDAVP), wydajnie podnoszącej efektywność budowy modeli autogenerujących oraz wspierającej opracowanie bazy wiedzy, będącej zabezpieczeniem „know how” w przedsiębiorstwie.

Podsumowując stwierdzam, że zadania badawcze, które podjął Doktorant uzupełniają wiedzę z zakresu projektowania i wytwarzania wyrobów wariantowych oraz poszerzają możliwości spełnienia postulatu masowej kastomizacji. Rozprawę doktorską mgr inż. Przemysława Zawadzkiego oceniam w pełni pozytywnie. Opracowanie edytorskie rozprawy jest na bardzo dobrym poziomie.

3. Ocena końcowa rozprawy doktorskiej

Przedstawiona rozprawa doktorska należy do ważnego obszaru badawczego, związanego z opracowaniem nowych, innowacyjnych wyrobów z ukierunkowaniem ich cech zgodnie z wymaganiami indywidualnego klienta.

Mgr inż. Przemysław Zawadzki opanował na wymaganym poziomie współczesne metody organizacji badań i właściwe dla nich narzędzia, w tym narzędzia informatyczne, służące do rozwiązywania złożonych, wielowariantowych problemów badawczych i zadań produkcyjnych.

Opiniowana rozprawa doktorska, mieszcząca się w dyscyplinie „budowa i eksploatacja maszyn” posiada oryginalne cechy nowości i znaczące walory utylitarne. Biorąc pod uwagę uzyskane efekty i wysoki poziom opracowania rozprawy wnioskuję o jej wyróżnienie. Na podstawie przedstawionej analizy stwierdzam, że rozprawa doktorska mgr inż. Przemysława Zawadzkiego nt.: „Metodyka budowy zautomatyzowanego systemu projektowania wyrobów wariantowych z zastosowaniem narzędzi inżynierii wiedzy” spełnia wymagania ustawy o stopniach naukowych i tytułe naukowym oraz o stopniach i tytułach w zakresie sztuki (ustawa z dnia 14 marca 2003 r., tekst ujednolicony z dnia 29 września 2014 r. wraz z późniejszymi rozporządzeniami) i wnoszę o dopuszczenie jej Autora do publicznej obrony.

Kraków, dnia 14 maja 2016 r.